Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10

Gujarat Board GSEB Textbook Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 Textbook Questions and Answers.

Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.10

Evaluate the following integrals:
Question 1.
\int_{0}^{1} \frac{x}{x^{2}+1} dx
Solution:
Let I = \int_{0}^{1} \frac{x}{x^{2}+1} dx.
Put x2 + 1 = t, 2x dx = dt.
When x = 1, t = 2 and when x = 0, t = 1.
∴ I = \int_{2}^{1} \frac{dt}{t}
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 1
= log 2.

GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 2.
\int_{0}^{\frac{\pi}{2}} \sqrt{sinϕ}cos5ϕdϕ
Solution:
Let I = \int_{0}^{\frac{\pi}{2}} \sqrt{sinϕ}cos5ϕdϕ
= \int_{0}^{\frac{\pi}{2}} \sqrt{sinϕ}cos4ϕcosϕdϕ
Put sinϕ = t so that cosϕ dϕ = dt.
When ϕ = 0, t = 0 and when ϕ = \frac{π}{2}, t = 1.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 2

Question 3.
\int_{0}^{1} sin-1(\frac{2 x}{1+x^{2}})dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 3
Integrating by parts, taking θ as first function,
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 4

GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 4.
\int_{0}^{2}x\sqrt{x+2} dx
Solution:
Let I = \int_{0}^{2}x\sqrt{x+2} dx
Put x + 2 = t2 so that dx = 2t dt.
When x = 0, t = \sqrt{2} and when x = 2, t2 = 4 ⇒ t = 2.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 5

Question 5.
\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} dx
Solution:
Let I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} dx
Put cos x = t so that – sin x dx = dt.
When x = 0, t = cos 0 = 1 and when x = \frac{π}{2}, t = cos \frac{π}{2} = 0.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 6

GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 6.
\int_{0}^{2} \frac{d x}{x+4-x^{2}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 7

Question 7.
\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}
Solution:
Let
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 8

Question 8.
\int_{1}^{2} (\frac{1}{x}\frac{1}{2 x^{2}} e2x dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 9

GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10

Choose the correct answers in questions 9 and 10:
Question 9.
The value of the integral \int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} dx is
(A) 6
(B) 0
(C) 3
(4) 4
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 10
∴ Part (A) is the correct answer.

GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 10.
If f(x) = \int_{0}^{x} tsint dt, then f'(x) is
(A) cos x + x sin x
(B) x sin x
(C) x cos x
(D) sin x + x cos x
Solution:
R.H.S. = f(x) = \int_{0}^{x} tsint dt
Integrating, by parts taking t as first function, we get
GSEB Solutions Class 12 Maths Chapter 7 Integrals Ex 7.10 img 11
∴ f'(x) = – [1.cos x – x sin x] + cos x = x sin x.
∴ Part (B) is the correct answer.

Leave a Comment

Your email address will not be published. Required fields are marked *