GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

Gujarat Board GSEB Textbook Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise Textbook Questions and Answers.

Gujarat Board Textbook Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

Question 1.
Find the derivatives of the following from first principle:
(i) – x
(ii) (- x)-1
(iii) sin (x + 1)
(iv) cos ([x – \(\frac{Ï€}{8}\))
Solution:
(i) Let f(x) = – x.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 1

(ii)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 2

(iii)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 3

(iv)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 4

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

Find the derivatives of the following functions, it is understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n integers.
2. ax + b
3. (px + q) (\(\frac{r}{x}\) + s)
4. (ax + b)(ex + d)2
5. \(\frac{ax+b}{cx+d}\)
6. \(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\)
7. \(\frac{1}{a x^{2}+b x+c}\)
8. \(\frac{ax+b}{p x^{2}+q x+r}\)
9. \(\frac{p x^{2}+q x+r}{a x+b}\)
10. \(\frac{a}{x^{4}}-\frac{b}{x^{2}}\) + cos x
11. 4\(\sqrt{x}\) + 2
12. (ax + b)n
13. (ax + b)n(cx + d)m
14. sin (x + a)
15. cosec x cot x
16. \(\frac{cosx}{1+sinx}\)
17. \(\frac{sinx+cosx}{sinx-cosx}\)
18. \(\frac{sec x-1}{sec x+1}\)
19. sinnx
20. \(\frac{a+bsinx}{c+dcosx}\)
21. \(\frac{sin(x+a)}{cosx}\)
22. x4(5sinx – 3cosx)
23. (x2 + 1) cos x
24. (ax2 + sin x)(p + qcos x)
25. (x + cos x)(x – tan x)
26. \(\frac{4x+5sinx}{3x+7cosx}\)
27. \(\frac{x^{2} \cos \left(\frac{\pi}{4}\right)}{\sin x}\)
28. \(\frac{x}{1+tanx}\)
29. (x + secx)(x – tan x)
30. \(\frac{x}{\sin ^{n} x}\)
Solutions to questions 2 to 30:

2.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 5

3. Let f(x) = (px + q) (\(\frac{r}{x}\) + s).
We have: (uv) = u’v + uv’
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 6

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

4. Let f(x) = (ax + b)(cx + d)2
To different (cx + d)2, put cx + d = u.
So, (cx + d)2 = u2.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 7
= a[(cx + d)2 + (ax + b).2c(cx + d)
= 2c(ax + b)(cx + b) + a(cx + d)2.

5. Let f(x) = \(\frac{ax+b}{cx+d}\)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 8

6.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 9

7.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 10

8.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 11

9.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 12

10.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 13

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

11. Let f(x) = 4\(\sqrt{x}\) + 2 = 4x1/2 + 2.
∴ f ‘(x) = 4.\(\frac{1}{2}\)x-1/2 + 0 = 2x-1/2 = \(\frac{2}{\sqrt{x}}\)

12. Let f(x) = (ax + b)n. Put ax + b = u.
∴ f(x) = un
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 14
= na(ax + b)n-1.

13. Let f(x) = (ax + b)n(cx + d)m
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 15
= na(ax + b)n-1(cx + d)m + (ax + b)n.mc(cx + d)m-1
= (ax + b)n-1(cx + d)m-1 [na(cx + d) + mc(ax + b)].

14. Let f(x) = sin (x + a).
Putting x + a = u, we get \(\frac{du}{dx}\) = 1.
∴ f(x) = sin u.
∴ f ‘(x) = \(\frac{d}{dx}\) sin u = \(\frac{d}{du}\)sin u. \(\frac{du}{dx}\)
= cos u.\(\frac{du}{dx}\)
= cos (x + a).1
∴ f ‘(x) = cos (x + a).

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

15. Let f(x) = cosec x cot x
f ‘(x) = (uv)’ = u’v + uv’
= (\(\frac{d}{dx}\) cosec x) cot x + cosec x (\(\frac{d}{dx}\) cot x) ……………. (1)
Now \(\frac{d}{dx}\) cosec x = – cosec x cot x
\(\frac{d}{dx}\) cot x = – cosec2x
Putting these values in (1), we get
f ‘(x) = (- cosec x cot x) cot x + cosec x (- cosec2 x)
= – cosec3x – cosec x cot2 x.

16. Let f(x) = \(\frac{cosx}{1+sinx}\)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 16

17. Let f(x) = \(\frac{sin x+cos x}{sin x-cos x}\)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 17

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

18. Let f(x) = \(\frac{sec x-1}{sec x+1}\)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 18
Note that \(\frac{d}{dx}\) sec x = sec x tan x.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 19

19. Let f(x) = sinnx.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 20
= nsinn-1x cos x.

20. Let f(x) = \(\frac{a+bsinx}{c+dsinx}\)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 21

21. Let f(x) = \(\frac{sin(x + a)}{cosx}\)
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 22

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

22. Let f(x) = x4(5sin x – 3cos x)
f ‘(x) = (uv)’ = u’v + uv’
= (\(\frac{d}{dx}\) x4) (5sin x – 3cos x) + x4\(\frac{d}{dx}\) (5sinx – 3cos x)
= 4x3(5sin x – 3cos x) + x4(5cos x + 3sin x)
= x3[5x cos x + 3xsin x + 20 sin x – 12cos x].

23. Let f(x) = (x2 + 1)cos x.
f ‘(x) = (uv)’ = u’v + uv’
= [\(\frac{d}{dx}\) (x2 + 1)]cos x + (x2 + 1)\(\frac{d}{dx}\) (cos x)
= 2xcos x – (x2 + 1) sin x.

24. Let f(x) = (ax2 + sin x)(p + qcos x).
f ‘(x) = (uv)’ = u’v + uv’
= [\(\frac{d}{dx}\) (ax2 + sin x)] (p + qcos x) + (ax2 + sin x)\(\frac{d}{dx}\)(p + q cos x)
= (2ax + cos x)(p + q cos x) + (ax2 + sin x)(- q sin x).
= – q sin x(ax2 + sin x) + (p + q cos x)(2ax + cos x).

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

25. Let f(x) = (x + cos x)(x – tan x).
f ‘(x) = (uv)’ = u’v + uv’
= [\(\frac{d}{dx}\)(x + cos x)] (x – tan x) + (x + cos x)\(\frac{d}{dx}\)(x – tan x)
= (1 – sin x)(x – tan x) + (x + cos x)(1 – sec2 x) [∵ \(\frac{d}{dx}\)tan x = sec2 x]
= – (x + cos x)(sec2 x – 1) + (x – tan x)(1 – sin x)
= – (x + cos x)tan2 x + (x – tan x)(1 – sin x)

26.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 23

27.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 24

28.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 25

GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise

29. Let f(x) = (x + sec x)(x – tan x)
f ‘(x) = (uv)’ = u’v + uv’
= [\(\frac{d}{dx}\)(x + sec x)] (x – tan x) + (x + sec x)\(\frac{d}{dx}\)(x – tan x)
= (1 + sec x tan x)(x – tan x) + (x + sec x)(1 – sec2 x)
= (x + sec x)(1 – sec2x) + (x – tan x)(1 + sec x tan x)

30. Let f(x) = \(\frac{x}{\sin ^{n} x}\)
We have: \(\frac{d}{dx}\)x = 1 and \(\frac{d}{dx}\) sinnx = nsinn-1cos x.
GSEB Solutions Class 11 Maths Chapter 13 Limits and Derivatives Miscellaneous Exercise img 26

Leave a Comment

Your email address will not be published. Required fields are marked *